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X-ray imaging capabilities can measure features that are 
important for target fabrication.

§ Digital radiography (DR)
• Sample is stationary
• 3-D object is compressed to 2-D projection (radiograph).

§ Computed tomography (CT)
• Sample is rotated 180°/360°.
• Many 2-D projections are acquired.
• 2-D projections are used to compute 3-D representation of object.
• Cross-sectional views (i.e. “slices”) are available.
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The uniformity of µL is an important specification for 
radiation transport targets.
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The measurement of µL as a function of position shows 
that the target meets design specifications.
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The thickness and spacing of CRF layers are important 
specifications for these graded density reservoirs.

Carbon Resorcinol Foam (CRF)

Stack of four CRF wafers 
mounted on a washer.

Side view

Top view
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The measurement of the density gradient is a challenge 
that can be met by x-ray characterization.
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A face-on digital radiograph shows the uniformity of µL 
as a function of position for the stacked CRF layers.
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An edge-on digital radiograph reveals the layer and gap 
thicknesses and uniformity for the stacked CRF layers.
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Physics requires that the gaps between 
CRF layers be less than 10 µm.  These 
images of early test assemblies showed 
potential gaps of up to 12 µm.  

Fabrication procedures were modified 
to correct this alignment error, and 
subsequent stacks meet design 
specifications. 
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60 μm

Ø2 mm

The dimensions of the layered machined SU8 grooves are 
important specifications for these graded density reservoirs.
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Both digital radiography and computed tomography were 
used to characterize the structural features of the SU8 layers.
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A side-on digital radiograph shows that the layer 
thicknesses meet the design specifications.
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Note: This projection is slightly 
rotated – 0.25 degree – about
the vertical axis.  So the image
shows a small amount of overlap 
between structural layers.
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A face-on digital radiograph shows that the layer 
features meet the design specifications as well.
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A tomographic slice shows the spacing and shape of 
the grooves within one layer of the structure.
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X-ray computed tomography can provide accurate 
metrology of hohlraum assembly components.
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Computed tomography may provide the best metrology 
of the size of gaps between hohlraum halves.

§ The designed-in gap between 
hohlraum halves allows for 
tolerance accommodation and 
cryogenic contraction of materials.

§ The resulting gap is a compilation 
of multiple component and 
assembly tolerances.

§ The direct measurement of the 
assembled target will be important 
to final shot fidelity.

gap
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A tomographic slice clearly shows the gap between the 
hohlraum halves.

Gap between
hohlraum halves
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A lineout from the tomographic image demonstrates 
that the gap spacing meets the design specification.
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Computed tomography can provide excellent metrology 
of the structural dimensions of the LEH component.

§ The hohlraum length is defined 
by the distance between the 
inner LEH apertures.

§ This distance is the composite of 
many component tolerances.

§ A direct measurement is only 
likely with x-ray metrology.
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A tomographic slice shows the cross-sectional 
dimensions of the LEH component.

LEH assembly

Hohlraum half 



20LLNL-PROC-403811

Lawrence Livermore National Laboratory

Summary

§ The Xradia Micro XCT and LLNL CCAT x-ray systems are    
used to nondestructively characterize a variety of materials, 
assemblies, and reference standard components.

§ The digital radiograph (DR) and computed tomography (CT) 
image data may be used for metrology, quality control, and 
defect detection.

§ The ability to detect and characterize imperfections leads to 
improvements in the manufacturing processes for assemblies. 

§ Special thanks to LLNL’s Bill Brown, George Langstaff, Matt 
Bono, and Jeff Klingman, all of whom provided some of the 
graphical content for this presentation.


